Eierte Multi-Academy Trust Calculation policy - multiplication		
Key language: double, times, group	multiplied by, the product	groups of, lots of, equal
Concrete	pictoriol	Abstract
Doubling - Children will understand doubling as making a number twice as big using a range of equipment. Double 4 is 8.	Double 4 is 8 Children draw a picture to represent the objects doubled.	$\begin{aligned} & 4+4=8 \\ & 2 \times 4=8 \end{aligned}$ Just know it! - Children will learn double facts off by heart 1-5 and then to 10 .
Children begin to explore concept by grouping into equal groups. E.g. 2 candles on each cake, pairs of socks. Repeated grouping/repeated addition $\begin{aligned} & 3 \times 4 \\ & 4+4+4 \end{aligned}$	Children to represent the practical resources in a picture and then use a bar model.	Children to then record as repeated addition and then move onto multiplication. $\begin{aligned} & 4+4+4=12 \\ & 3 \times 4=12 \end{aligned}$

(There are

Use arrays to illustrate commutativity. Counters and other objects can also be used.
$2 \times 5=5 \times 2$

$5 \times 2=10$
$2 \times 5=10$

Children to be able to use an array to write a range of calculations e.g.
$10=2 \times 5$
$5 \times 2=10$
$2+2+2+2+2=10$
$10=5+5$

If I know... Children recognise and use factor pairs and commutativity in mental calculations.

Formal column method with place value counters (base 10 can also be used.) 3×23

Children to represent the counters pictorially.

Children to record what it is they are doing to show understanding. $3 \times 23 \quad 3 \times 20=$ 60

$$
\begin{array}{ccc}
& & 3 \times 3= \\
20 & 3 & 60+9=69
\end{array}
$$

$$
\begin{array}{r}
23 \\
\times \quad 3 \\
\hline 69 \\
\hline
\end{array}
$$

Formal column method with place value counters. 6×23

Children to represent the counters/base 10, pictorially e.g. the image below.

Formal written method
$6 \times 23=$
23
$\begin{array}{r}\times \quad 6 \\ \hline 138\end{array}$
11


```
When children start to multiply 3d }\times3\textrm{d}\mathrm{ and 4d }\times2\textrm{d}\mathrm{ etc., they should be confident with the abstract:
To get 744 children have solved \(6 \times 124\).
To get 2480 they have solved \(20 \times 124\).
```



```
Answer: 3224
Conceptual variation; different ways to ask children to solve \(6 \times\)```

